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1 The Banach-Stone Theorem and Compact Operators

1.1 The Banach-Stone theorem

Lemma 1.1. Let X be a compact, Hausdorff space. Let X × S1 → M(X) send (x, α) 7→
α · δx. This is a homeomorphism from X × S1 to (ext(BM(X)),wk*).

Proof. First, we show that αδx is an extreme point. If αδx = tµ(1 − t)ν, then the total
variation of µ or ν must be 1. So µ and ν are supported on {x}. Since α ∈ S1, we must
have µ = δx or ν = δx.

Let ϕ(x, α) = αδx. Then

{(x′, α′) : |α′f(x′)− αf(x)| < ε} = ϕ−1
{
µ : |

∫
f dµ− αf(x)| < ε

}
.

So this is continuous.
Injectivity: If |αδx| = |α′δx′ |, then x = x′ and α = α′.
Finally, assume that µ ∈ ext(BM(X). Then |µ| is a regular positive Borel measure. The

support K of |µ| is the set

K =
⋂

C⊆X closed
|µ|(X\C)=0

.

Then |µ|(X \K) (because the measure is regular).
We need to show that K is a singleton. Suppose not. Suppose that U ∩ V = ∅, where

µ has positive measure in each. Then there is an f : X → [0, 1] such that f |U = 0 and
f |V = 1. If µ is positive, write

µ =

∫
f dµ · fµ∫

f dµ
+

∫
(1− f) dµ

(1− f)µ∫
(1− f) dµ

.

These two measures are different, which contradicts the fact that µ is an extreme point.
For general µ, use µ = dµ

d|µ| |µ|.
This argument shows that K = {x}. This implies that µ = αδx for some α ∈ S1.
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Theorem 1.1 (Banach-Stone). Any isometric isomorphism C(X)→ C(Y ) is of the form
Tf(y) = α(y)f(τ(y)), where τ : Y → X is a homeomorphism and α : Y → S1.

Proof. The adjoint T ∗ : M(Y )→M(X) resitrcts to a continuous map (extBM(Y ),wk*)→
(extBM(X),wk*). By the lemma, we have a continuous map Y × S1 → X × S1. We can
view Y = Y × {1} ⊆ Y × S1 and same for X. Then T ∗(δy) = α(y) · δτ(y) for some α, τ ,
both continuous. Moreover, τ must be invertible. Now we have

Tf(y) = 〈Tf, δy〉 = 〈f, T ∗δy〉 = α(y)f(τ(y)),

as desired.

1.2 Compact operators

Let X,Y be Banach spaces.

Definition 1.1. A ∈ B(X,Y ) is compact if any of the following equivalent statements
hold:

• A(BX) is norm compact.

• A(BX) is totally bounded.

• For any bounded sequence (xn)n in X¡ (Txn)n has a norm-Cauchy subsequence.

Example 1.1. If dim ran(A) <∞, then A is compact.

Proposition 1.1. If dimX =∞, then IdX is not compact.

Proof. Assume (towards a contradiction that BX is compact and hence totally bounded.
So there existx1, . . . , xn ∈ X such that BX ⊆

⋃n
i=1B(Xi, 1/2). Then let y ∈ BX and

z ∈ span{x1, . . . , xn} be such that ‖y − z‖ < (1 = εdist(y,M) > 0. Then ‖y − z‖ <
(1+ε) dist(y−z,M). So 1 < (1+ε) dist( y−z

‖y−z‖M); i.e.dist( y−z
‖y−z‖M) > 1/(1+ε) > 1/2.

Theorem 1.2. Let X,Y be Banach spaces, and let A ∈ B(X,Y ). Then A is compact if
and only if A∗ is compact.

Proof. ( =⇒ ): Let (fn)n ∈ BY ∗ . Observe that

‖A∗f‖ = sup{|f(Ax) : x ∈ BX} = ‖f |A(BX)‖∞.

If f ∈ BY ∗ , then f is 1-Lipschitz and bounded by 1 on the compact space A(BX). So
{f |

A(BY )
: f ∈ BY ∗} is norm-compact. So there is a Cauchy subsequence in (A∗fn)n by

Arzelà-Ascoli.
(⇐= ): A∗∗|X = A.
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Definition 1.2. Denote B0(X,Y ) as the collection of compact operators X → Y and
B00(X,Y ) as the collection of finite-rank operators X → Y .

Proposition 1.2. Let X,Y be Banach spaces.

1. B0 is a closed subspaces of B(X,Y ).

2. Suppose A : X → Y and B : Y → Z are bounded. If either A or B is compact, then
BA is compact.

Proof. Suppose A ∈ B0(X,Y ); we want to show that A is compact. Consider A(BX) ⊆
Bε(C(BX)). For every ε > 0, there is a C ∈ B0(X,Y ) such that ‖A−C‖op < ε. So we can
cover A(BX) with finitely many balls of radius 2ε.

Assume A is compact, then A(BX) is totally bounded, and B(A(BX)) ⊆ B(A(BX)).

Corollary 1.1. B0(X) is an ideal in B(X). So B0(X) is an algebra.

Example 1.2. Let (X,Σ, µ) be a measure space, an dlet k ∈ L2(X × X,µ × µ). Then
define the kernel operator

Kf(y) =

∫
k(x, y)f(x) dµ(x).

Then K ∈ B(L2(µ), L2(µ)), and ‖K‖op ≤ ‖k‖L2(µ×µ).
K is comapct because for all ε > 0, there exist ϕ1, . . . , ϕn ∈ L2(µ) and ψ1, . . . , ψn ∈

L2(µ) such that ∥∥∥∥∥k(x, y)−
n∑
i=1

ϕi(x), ψi(y)

∥∥∥∥∥
L2

< ε.

So a finite rank approximation gives us that K is compact.

It is not always true that we can approximate by finite rank operators, but the coun-
terexamples tend to be complicated.

Theorem 1.3. Let X be a compact Hausdorff space. Then the space B00(C(X)) is dense
in B0(C(X)).

Proof. Assume A(BC(X)) is totally bounded. Pick ε > 0, and let U1, . . . , Un be an cover X

with xi ∈ Ui. For any f ∈ BC(X) and x ∈ Ui, we have |Af(x)−Af(xi)| < ε. There exists a
partition of unity: ϕ1, . . . , ϕn with 0 ≤ ϕo ≤ 1 such that ϕi|Uc

i
= 0 ad

∑n
i=1 ϕi = 1. Define

Aεf(x) :=
n∑
i=1

Af(xi) · ϕi(x).

This is finite rank because it takes values in the span of the ϕi. We then have

|Af(x)−Aεf(x)| ≤
n∑
i=1

|Af(x)−Af(xi)|ϕi(x) < ε.
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